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 ABSTRACT 

    An open-ocean thermocline dome south of the equator is a striking feature of the 

Indian Ocean (IO) as a result of equatorial westerly winds. Over the thermocline 

dome, the El Niño-forced Rossby waves help sustain the IO basin (IOB) mode and 

offer climate predictability for the IO and surrounding countries. This study shows 

that a common equatorial easterly wind bias, by forcing a westward-propagating 

downwelling Rossby wave in the South IO, induces too deep a thermocline dome over 

the southwestern IO (SWIO) in state-of-the-art climate models. Such a deep SWIO 

thermocline weakens the influence of subsurface variability on sea surface 

temperature, reducing the IOB amplitude and possibly limiting the models’ skill of 

regional climate prediction. To the extent that the equatorial easterly wind bias 

originates from errors of the South Asian summer monsoon, improving the monsoon 

simulation can lead to substantial improvements in simulating and predicting 

interannual variability in the IO. 
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1. Introduction 

    The Indian Ocean (IO) is extraordinary in featuring westerly winds on the 

equator. The equatorial westerly winds are important for tropical IO climate (Schott et 

al. 2009). In particular, the cyclonic wind curl between the equatorial westerlies and 

southeasterly trades induces a pronounced open-ocean upwelling over the tropical 

southwestern IO (SWIO) (Xie et al. 2002). As a result, the shallow thermocline depth 

(20 °C isotherm, Z20) is present from 5° to 10°S and 50° to 80°E all through the year 

(Figure 1a and Figure S1 in the Supplementary Material), allowing a strong influence 

of subsurface variability on sea surface temperature (SST). 

    Such a SWIO thermocline dome is, in contrast to the tropical Pacific and Atlantic 

Oceans, unique to the IO with important implications for regional climate prediction 

(Xie et al. 2002). During El Niño, anomalous equatorial easterlies during boreal 

autumn (September-November, SON), one consequence of Walker circulation 

adjustments, force a westward-propagating downwelling Rossby wave in the tropical 

southeastern IO. As it propagates into the SWIO thermocline dome in the following 

boreal spring, the Rossby wave-induced SST warming there can, via initiating a series 

of air-sea interaction, help sustain the dominant mode of interannual variability for 

tropical IO SST (Du et al. 2009; Kosaka et al. 2013), i.e. the so-called the IO basin 

(IOB) mode (Klein et al. 1999; Lau et al. 2000), exerting important climate impacts 

affecting large populations in India, China, and Japan (Yang et al. 2007; Xie et al. 

2009; Kosaka et al. 2013). Thus, the shallow thermocline dome and slow oceanic 
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Rossby wave south of the equator offer potential predictability of the IOB mode and 

IO rim countries’ climate anomalies. 

Most of the current coupled general circulation models (CGCMs) suffer from 

large simulation errors (Li and Xie 2012, 2014), for example, a strong easterly wind 

bias along the equatorial IO (Cai and Cowan 2013; Lee et al. 2013; Li et al. 2015) 

accompanied by physically consistent biases in SST and precipitation during SON, in 

patterns similar to a positive IO Dipole (IOD) (Saji et al. 1999; Webster et al. 1999) 

event in nature (Figure S2 in the Supplementary Material). Conceivably such a strong 

easterly wind bias in the equatorial IO in CGCMs could affect climate simulation off 

the equator. Given the importance of the SWIO thermocline dome for regional 

climate simulation and prediction, we propose a hypothesis now that the equatorial 

easterly bias in SON, in analogy to an El Niño forcing in nature, could deepen the 

SWIO thermocline dome and suppress the effect of subsurface thermocline variability 

on SST there in CGCMs. Indeed, the present study reveals that a too deep Z20 error 

over the SWIO is commonly present in the current CGCMs, owing to the typical 

equatorial easterly wind bias. We find that these mean state biases affect the simulated 

IOB amplitude of interannual variability, potentially limiting the skill of climate 

prediction using CGCMs. 

The rest of the paper is organized as follows. Section 2 describes models and 

datasets used in this study. Section 3 investigates the SWIO thermocline dome errors 



5 
 

and their effects on the simulation and prediction of interannual IOB variability in 

CGCMs. Section 4 is a summary with discussion. 

 

2. Models and datasets 

We examine the 56-yr (1950-2005) climate of the historical simulations from 19 

CGCMs in the Coupled Model Intercomparison Projection phase 5 (CMIP5) 

multi-model ensemble (Taylor et al. 2012). Table S1 in the Supplementary Material 

lists these models. The description of individual models can be obtained online at 

http://www-pcmdi.llnl.gov/. The multi-model ensemble mean (MME) in this study is 

defined as only the average of 14 CGCMs [excluding 5 CGCMs (red circled group in 

Figure S2 in the Supplementary Material) with no equatorial easterly wind bias], 

unless otherwise specified. 

For comparison, we also examine both the observed and reanalyzed (assimilated) 

datasets (for simplicity referred to as observations) including the ocean temperature 

from the Simple Ocean Data Assimilation (SODA) reanalysis (Carton et al. 2008) for 

1950-99, Hadley Centre Sea Ice and SST (HadISST; Rayner et al. 2003) for 1950-99, 

precipitation from the Global Precipitation Climatology Project (GPCP; Adler et al. 

2003) for 1979-2008, and lower tropospheric (925 mb) wind from ECWMF 40 Year 

Re-analysis (ERA-40; Uppala et al. 2005) for 1958-2001. 

 

3. Results 
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a. Thermocline dome errors 

Figures 1a and 1b compare the annual mean Z20 over the tropical IO between 

observations and the MME simulation. The models have an overly deep thermocline 

dome over the SWIO, with the area surrounded by 100 m contours of annual mean 

Z20 in the MME simulation greatly shrinking into less than half of that in 

observations. While the annual mean Z20 over the SWIO thermocline dome (5°-10°S, 

50°-80°E) in observations is only about 90 m depth, that in the MME simulation is 

significantly deepened and reaches up to about 105 m depth (Figure 1c). In general, 

too deep a thermocline dome over the SWIO in CMIP5 CGCMs is largely 

independent of season, but the bias amplitudes can vary with season, with being 

slightly weaker in magnitude in boreal summer (June-August, JJA; Figure S1 in the 

Supplementary Material). 

 

b. Origin of the thermocline dome errors 

We turn our attention to the cause of Z20 deepening error over the SWIO 

thermocline dome in CMIP5 CGCMs. Figure 2 presents the inter-model regressions 

of SST, Z20, and 925 mb wind onto the central equatorial IO (CEIO, 70°-90°E) zonal 

wind during boreal autumn among observations and 19 CMIP5 CGCMs. Associated 

with the strong easterly wind bias on the equator, the cyclonic wind curl between the 

equatorial westerlies and southeasterly trades and resultant open-ocean upwelling in 
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the tropical South IO would be largely weakened in CMIP5 CGCMs, deepening the 

thermocline there. 

Then, the Z20 biases averaged in 8°-12°S as a function of longitude and calendar 

month for the MME simulation in comparison with observations are shown in Figure 

3. Accompanied by the strong equatorial easterly wind bias, the thermocline 

deepening error in the MME simulation grows rapidly from September to November 

at 80°-85°E with a maximum being more than 30 m, which thereafter propagates 

slowly to the west and reaches 60°E in May of the following year. Such a westward 

propagation of thermocline deepening bias along 10°S in CMIP5 CGCMs is similar to 

the South IO Rossby wave response to El Niño-forced easterly wind anomalies along 

the equatorial IO in nature (Xie et al. 2002). 

Inter-model statistics also support our hypothesis that such a deepening SWIO 

thermocline dome originates from too strong equatorial easterly wind bias in CGCMs. 

Figures 4a and 4b show the inter-model relationship of the CEIO zonal wind in SON 

with the Z20 averaged over the SWIO thermocline dome in SON and boreal winter 

(December-February, DJF) among observations and 19 CMIP5 CGCMs, respectively. 

Indeed, models with a weaker equatorial westerly wind in SON tend to feature a 

deeper thermocline over the SWIO in both SON and DJF, with the inter-model 

correlations at -0.71 and -0.76, respectively. 

 

c. Effects on the basin mode 
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Finally, our concern is the effects of such a deep SWIO thermocline dome in 

CMIP5 CGCMs induced by the equatorial easterly wind bias on the regional climate 

simulation and prediction on interannual time scale. As explained in the Introduction, 

if properly initialized, CGCMs can potentially predict the El Niño-forced IOB mode 

and hence IOB-related regional climate anomalies in advance, owing to the shallow 

thermocline dome and slow oceanic Rossby waves in the tropical South IO. However, 

too deep a thermocline dome over the SWIO in CMIP5 CGCMs results in 

significantly lower correlations between interannual variability in Z20 and SST there 

from November to May in comparison with observations, i.e. a significantly weak 

influence of subsurface thermocline variability on SST (Figure 5). 

As a result, importantly, this restrained thermocline-SST feedback in the tropical 

South IO would lead to an underestimation for the IOB amplitude of interannual 

variability in CGCMs and also inevitably limit their skill of regional climate 

prediction. Here the IOB amplitude is defined as the interannual standard deviation of 

tropical IO (40°-110°E, 20°S-20°N) mean SST during February-August; and the 

predictability of the IOB warming following El Niño is characterized by the 

correlation coefficient between the Nino3 (5°S-5°N, 150°-90°W) SST index during 

October-December and tropical IO mean SST during February-August of the 

following year. Indeed, models with a stronger equatorial easterly wind bias in SON 

tend to have a less amplitude of interannual IOB variability (Figure 4c) and weaker 
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predictability of the IOB warming following El Niño (Figure 4d), with the 

inter-model correlations of 0.76 and 0.72, respectively. 

 

4. Summary and discussion 

The equatorial westerly winds are the unique observed phenomenon to the IO, 

inducing a thermocline dome south of the equator (Xie et al. 2002). The shallow 

SWIO thermocline plays an important role for shaping tropical IO climate and its 

variability. For instance, its interaction with the El Niño-forced South IO oceanic 

Rossby wave can help sustain the IOB mode of inter-annual variability by initiating a 

series of air-sea interaction (Du et al. 2009; Kosaka et al. 2013), providing potential 

climate predictability in the region (Yang et al. 2007; Xie et al. 2009; Chowdary et al. 

2010). However, the westerly wind over the equatorial IO is too weak during SON in 

most CMIP5 CGCMs. The equatorial easterly wind bias in CMIP5 CGCMs causes 

too deep a SWIO thermocline dome through inducing a westward-propagating 

downwelling Rossby wave in the tropical South IO, somewhat similar to a South IO 

oceanic Rossby wave response to El Niño-forced easterly wind anomalies along the 

equator in nature. The deep thermocline dome bias over the SWIO in CMIP5 CGCMs 

could significantly reduce the effect of subsurface thermocline variability on SST 

there. As a result, too weak a thermocline-SST feedback over the SWIO in CMIP5 

CGCMs results in a deficiency in the simulated amplitude for the IOB mode of 



10 
 

interannual variability, and also lowers their skill in predicting the IOB warming 

following El Niño. 

The recent studies (Cai et al. 2013; Li et al. 2015) find that the easterly wind 

error in CGCMs can result in a too steep eastward shoaling of thermocline in the 

equatorial IO (Figure S3 in the Supplementary Material). The unrealistically steep 

thermocline slope generates too strong a thermocline feedback on SST, and thus 

develops an excessively large IOD amplitude of inter-annual variability in CGCMs 

(Cai and Cowan 2013), exerting profound social and economic consequences for the 

IO rim countries such as Indonesia and Kenya (Saji et al. 1999; Hashizume et al. 2009; 

Cai et al. 2011). Furthermore, our recent research (Li et al. 2015) suggests that the 

equatorial easterly wind bias can be traced back to errors in the South Asian summer 

monsoon. Too weak cross-equatorial monsoon over the western basin in JJA 

(Annamalai et al. 2007; Boos and Hurley 2013) causes a sustained warm SST bias in 

the western equatorial IO (Figure S3 in the Supplementary Material). In SON, 

Bjerknes feedback helps amplify this SST error into an IOD-like pattern, with a strong 

equatorial easterly bias accompanied by physically consistent bias in the precipitation 

dipole (Figure S2 in the Supplementary Material). These results imply that reducing 

the monsoon errors in CGCMs will improve climate simulation and prediction for the 

IO and rim countries, and increase our confidence in their application for regional 

climate projection. 
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Figure captions 

Figure 1. Annual mean distributions of thermocline depth (20 °C isotherm, Z20; units: 

m) in (a) observations and (b) the multi-model ensemble mean (MME) simulation; (c) 

Z20 averaged over the SWIO thermocline dome (50°-80°E, 5°-10°S) for observations 

and the MME simulation. The 100 m contours in (a) and (b) are denoted by the black 

solid curves; the observed 100 m contours in (b) are superimposed in white dashed 

curves. The error bar in (c) indicates the standard deviation spread among CGCMs. 

 

Figure 2. Inter-model regressions of SST (color shaded, °C), Z20 (contours, m), and 

925 mb wind (vectors, m/s) during October-November onto the central equatorial IO 

(CEIO, 70°-90°E) zonal wind in SON among observations and 19 CMIP5 CGCMs. 

 

Figure 3. Longitude-time section of MME biases for Z20 (contours; shade > 15 m) 

averaged in 8°-12°S and equatorial zonal wind (vectors in m/s) in the CMIP5 CGCMs. 

The wind speed smaller than 1 m/s has been masked out. 

 

Figure 4. Scatter plots of the CEIO zonal wind (m/s) in SON versus (a) Z20 (m) over 

the SWIO thermocline dome in SON, (b) SWIO Z20 in December-February (DJF), (c) 

IOB amplitude, and (d) predictability of the IOB warming following El Niño among 

observations and 19 CMIP5 CGCMs. The IOB amplitude is here defined as the 

interannual standard deviation of tropical IO (40°-110°E, 20°S-20°N) mean SST (°C) 
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during February-August. The predictability of the IOB warming following El Niño is 

characterized by the correlation between the Nino3 (5°S-5°N, 150°-90°W) SST index 

during October-December and tropical IO mean SST during February-August of the 

following year. The inter-model correlation (r) is shown in each panel. 

 

Figure 5. The correlations between interannual variability in Z20 and SST over the 

SWIO thermocline dome for observations versus the MME as a function of calendar 

month. The error bars indicate the standard deviation spread among CGCMs. 
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Figure 2. Inter-model regressions of SST (color shaded, °C), Z20 (contours, m), and 

925 mb wind (vectors, m/s) during October-November onto the central equatorial IO 

(CEIO, 70°-90°E) zonal wind in SON among observations and 19 CMIP5 CGCMs. 
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Figure 3. Longitude-time section of MME biases for Z20 (contours; shade > 15 m) 

averaged in 8°-12°S and equatorial zonal wind (vectors in m/s) in the CMIP5 CGCMs. 

The wind speed smaller than 1 m/s has been masked out. 
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Figure 4. Scatter plots of the CEIO zonal wind (m/s) in SON versus (a) Z20 (m) over 

the SWIO thermocline dome in SON, (b) SWIO Z20 in December-February (DJF), (c) 

IOB amplitude, and (d) predictability of the IOB warming following El Niño among 

observations and 19 CMIP5 CGCMs. The IOB amplitude is here defined as the 

interannual standard deviation of tropical IO (40°-110°E, 20°S-20°N) mean SST (°C) 

during February-August. The predictability of the IOB warming following El Niño is 

characterized by the correlation between the Nino3 (5°S-5°N, 150°-90°W) SST index 

during October-December and tropical IO mean SST during February-August of the 

following year. The inter-model correlation (r) is shown in each panel. 
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Figure 5. The correlations between interannual variability in Z20 and SST over the 

SWIO thermocline dome for observations versus the MME as a function of calendar 

month. The error bars indicate the standard deviation spread among CGCMs. 
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