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ABSTRACT6

Forced interannual-to-decadal variability of annual tropical cyclone (TC) track density in7

the western North Pacific between 1979-2008 is studied using TC tracks from observations8

and simulations by a 25-km-resolution version of the GFDL High-Resolution Atmospheric9

Model (HiRAM) that is forced by observed sea surface temperatures (SSTs). Two modes10

dominate the decadal variability: a nearly-basin-wide mode, and a dipole mode between11

the subtropics and lower latitudes. The former mode links to variations in TC number and12

is forced by SST variations over the off-equatorial tropical central North Pacific, whereas13

the latter might be associated with the Atlantic Multidecadal Oscillation. The interannual14

variability is also controlled by two modes: a basin-wide mode driven by SST anomalies of15

opposite signs located respectively in the tropical central Pacific and eastern Indian Ocean,16

and a southeast-northwest dipole mode connected to the conventional eastern Pacific ENSO.17

The seasonal evolution of the ENSO effect on TC activity is further explored via a joint18

EOF analysis using TC track density of consecutive seasons, and the analysis reveals that19

two types of ENSO are at work.20

Internal variability in TC track density is then examined using ensemble simulations from21

both HiRAM and a regional atmospheric model. It exhibits prominent spatial and seasonal22

patterns, and it is particularly strong in the South China Sea and along the coast of East23

Asia. This makes an accurate prediction and projection of TC landfall extremely challenging24

in these regions. In contrast, basin-integrated metrics (e.g., total TC counts and TC days)25

are more predictable.26
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1. Introduction27

The western North Pacific (WNP) is the basin where tropical cyclones (TCs) are most28

active. On average it witnesses more than 1/3 of global TCs, some being the strongest29

TCs in individual years. These, together with the large and dense population in East and30

Southeast Asia, have motivated numerous efforts to understand the variability of WNP TCs31

(e.g., Chan 1985; Lander 1994; Wang and Chan 2002; Chia and Ropelewski 2002; Elsner and32

Liu 2003; Wu et al. 2004; Camargo and Sobel 2005; Camargo et al. 2007a,b; Liu and Chan33

2008; Zhan et al. 2011a; Kim et al. 2011a; Huang et al. 2011; Wu et al. 2012; Park et al.34

2013).35

Among the many metrics of TC activity, track density is directly related to the TC-caused36

damage to human society by landfall. Its variability integrates variations in the number37

and location of TC genesis and in TC tracks. The WNP TC number varies considerably on38

various timescales. On relatively long timescales, available TC best-track data show that the39

WNP TC number peaked in the mid-1960s and early 1990s with a period of around 23 years40

(Matsuura et al. 2003). This interdecadal variability is related to the low-frequency variations41

in sea surface temperatures (SSTs) over the tropical central Pacific via the modulation of42

westerlies of the monsoon trough over the WNP. Recently, Liu and Chan (2013) show that43

the number of TCs generated over the southeastern part of the WNP is significantly related44

to the Pacific Decadal Oscillation (PDO). Meanwhile, the TC number exhibits short-term45

variations (Chan and Shi 1996), but the underlying mechanism is unclear. Some studies have46

concluded that annual TC number does not correlate with the El Niño-Southern Oscillation47

(ENSO) (e.g., Lander 1994; Wang and Chan 2002; Camargo and Sobel 2005).48

Although no connections have been reported between the total TC counts and ENSO,49

numerous studies have shown that ENSO strongly modulates the geographical distribution50

of TC genesis. During El Niño years, TCs tend to form closer to the equator and the51

dateline (i.e., more frequent in the southeastern quadrant of the WNP) than during La Niña52

years (Wang and Chan 2002; Camargo and Sobel 2005; Kim et al. 2010, 2011a), owing to53

the eastward extension of monsoon trough in the WNP. These storms, on average, persist54

longer and can grow to higher intensities than those during La Niña years as they pass over55

a larger area of warm water that provides energy for their development (Wang and Chan56

2002; Camargo and Sobel 2005). As a result, significantly more intense typhoons and fewer57

storms of tropical storm intensity are found for El Niño states (Camargo and Sobel 2005).58
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Steered largely by large-scale environmental air flows, TCs generally move in a direction59

between westward and northward after their formation, and the resultant tracks exhibit60

strong variations. TC tracks over the WNP can be grouped into one of the following two61

categories: straight-moving and recurving (Lander 1996; Elsner and Liu 2003). Including62

information of other aspects such as genesis location, TC tracks can be divided into further63

more types. For example, Camargo et al. (2007a) classify the WNP TCs over the entire TC64

season into seven clusters with a very detailed discussion. They reveal that straight-moving65

clusters are tighter than recurving clusters in latitudinal direction. Two of the seven clusters66

may be linked to El Niño conditions while one cluster occurs more frequently during La Niña67

events (Camargo et al. 2007b). Using a different clustering technique, Kim et al. (2011b)68

show that the WNP TC tracks over the TC active season can also be categorized into seven69

clusters with four of them being linked to either ENSO or the quasi-biennial oscillation.70

Because of the large variability in its three contributors (i.e., count, genesis location, and71

track), we expect to see strong variations in TC track density over the WNP. Compared72

to 1951-1979, Ho et al. (2004) find that during 1980-2001 TC track density of the boreal73

summertime significantly decreased over the East China Sea and Philippine Sea while had74

a slight increase in the South China Sea (SCS). They connect these interdecadal changes75

to the westward expansion of the subtropical WNP High. More recently, Liu and Chan76

(2008) explore the low-frequency variability of TC track density using an empirical orthog-77

onal function (EOF) analysis, and identify three leading modes, two of which are linked to78

variations in large-scale flow patterns. They attribute part of the decadal variability in TC79

track density to the PDO.80

On interannual timescales, owing to the influence of ENSO on the position of TC genesis81

and tracks, it is natural to look into its effect on TC track density. Indeed, Wang and Chan82

(2002) find that during strong El Niño years, TC track density almost doubles that in strong83

La Niña years. Recently, there is much debate about the two types of ENSO: the central84

Pacific (CP) and the conventional eastern Pacific (EP) ENSO (Ashok et al. 2007; Kao and Yu85

2009; Kug et al. 2009). They appear to affect TC track density differently (Kim et al. 2011a;86

Wang et al. 2013). For example, during the peak TC season, the EP warming produces a87

southeast-northwest dipole pattern in TC track density with below-normal activity over the88

northwestern part of the basin and reduced landfall on the coasts of East Asia. On the other89

hand, the CP warming favors above-normal activity over much of the WNP, including the90

northwestern flank where landfall takes place.91
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The above-mentioned studies, primarily based on observations, have greatly advanced92

our knowledge of the spatial and temporal variability in TC track density, the underlying93

patterns of atmospheric circulation, and its possible links to SSTs. Observations of short94

duration alone, however, cannot establish a cause-effect relationship between TC activity and95

SSTs. Here we take advantage of numerical simulations from high-resolution atmospheric96

general circulation models (AGCMs) forced by observed SSTs that show skills in reproducing97

interannual variability in TC counts. We show that the skills extend to TC track density98

variability. By design, the model skills are due to the prescribed SST variability, allowing us99

to isolate patterns of SST forcing for TC variability. While previous studies on how ENSO100

conditions affect TC track density heavily rely on correlation, regression, and composite101

analyses, we use EOF analyses – a more objective method – to extract the dominant modes102

of the variability in TC track density, and then connect these modes to the underlying103

SST forcing. We also, for the first time, explore the internal variability in WNP TC track104

density using the high-resolution ensemble simulations, with important implications for the105

predictability of local TC occurrence.106

After describing observational TC data, numerical simulations and methods (section 2),107

in section 3 we study separately the low- and high-frequency variability of the WNP TC108

track density and explore underlying mechanisms by analyzing SSTs and various atmospheric109

fields. We also study, in section 3, the seasonal evolution of ENSO effect on TC activity via110

a joint EOF analysis of TC track density during consecutive seasons. Section 4 examines the111

internal variability and associated predictability of the WNP TC track density and landfall112

using both global and regional downscaling simulations. A summary is given in section 5.113

2. Data and Methods114

a. Observational and reanalysis data115

The observed WNP TC tracks are from the Joint Typhoon Warning Center best track116

dataset (Chu et al. 2002), which provides the location and intensity of TCs at 6-hr intervals117

since 1945. SSTs from the Hadley Centre Sea Ice and Sea Surface Temperature data set118

(HadISST; Rayner et al. 2003) and atmospheric variables (including sea level pressure, 850-119

and 200-hPa winds and 500-hPa pressure velocity) from the NCEP/NCAR Reanalysis 1120

(Kalnay et al. 1996) are employed to understand the possible mechanisms underlying the121
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variability in observed TC track density1. To be consistent with the simulations described122

below, only the observational data from 1979 through 2008 are used.123

b. HiRAM simulations124

We use TC tracks simulated by a 25-km-resolution version of the Geophysical Fluid125

Dynamics Laboratory (GFDL) High-Resolution Atmospheric Model (HiRAM; Zhao et al.126

2012) to explore both the forced and internal variability of TC track density. The model is127

forced by observed SSTs, following the procedure of the Atmospheric Model Intercomparison128

Project (AMIP), with various modes of climate variability (such as ENSO and PDO) being129

imprinted in the SST anomalies. The simulations consist of three members, which are differ-130

ent only in initial conditions. The difference among the member runs is due to the chaotic131

and nonlinear nature of the atmospheric processes (Harzallah and Sadourny 1995; Griffies132

and Bryan 1997). The ensemble mean, representing a reproducible signal in association with133

external forcing, is considered as an approximation of the forced response in TC activity to134

prescribed SSTs.2 The deviation of each member from the ensemble mean is viewed as an135

approximation of the internal variability of the model.136

The criteria and methods used for detecting and tracking TCs are described in Mei et al.137

(2014), and are presented here in Appendix A for the convenience of reference.138

As shown in Mei et al. (2014), HiRAM generally reproduces the spatial distribution of139

global TC genesis and tracks (see also Fig. 1 here for TCs over the WNP), well simulates the140

climatological TC counts in all TC active basins, and is able to capture the interannual-to-141

decadal variations in TC counts over the North Atlantic. Figure 2a compares the evolution of142

anomalous annual TC counts over the WNP between observations and HiRAM simulations.143

It is evident that HiRAM reasonably well simulates the observed variability in annual TC144

number, particularly on the low-frequency timescales. For example, on decadal timescales,145

the TC number maximized during the early 1990s in both observations and HiRAM simu-146

lations. The model overestimates the interannual variations during the first 10 years of the147

1Using NCEP-DOE Reanalysis 2 data produces nearly identical results.
2A strictly defined forced response can be obtained following the methodology presented in Venzke et al.

(1999) when the ensemble size is greater than 10. But in this study with only three (HiRAM) simulations

we simply define their ensemble mean as the forced response. Similarly, three members may not be sufficient

to represent internal variability accurately. Further studies with a much larger ensemble size are desirable

in the future.
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simulations. This bias may be due to the lack of short-timescale air-sea coupling, an issue148

that needs further investigation and deeper understanding.149

Figures 3a,b compare the observed and HiRAM-simulated geographical distribution of150

climatological annual TC track density. Generally, HiRAM reproduces the observed large-151

scale pattern and magnitude of the track density. For instance, in both observations and152

HiRAM simulations, TC track density is relatively dense over the East China Sea and the153

Philippine Sea with a southeast-northwest orientation, which corresponds a typical TC mo-154

tion. But HiRAM underestimates the track density over the SCS, which, to a large extent,155

can be attributed to a severe underestimation of TC genesis there (cf. Figs. 1a,b).156

c. iRAM simulations157

We also use regional downscaling simulations from the International Pacific Research158

Center (IPRC) Regional Atmospheric Model (iRAM) to study the internal variability of159

WNP TC track density. The iRAM simulations consist of four members that are different160

only in initial conditions, and cover the period between 1982 and 2001. These simulations are161

constrained by observed atmospheric conditions on the lateral boundaries. Because of this162

and the short period of simulation (1982-2001), we do not use these simulations to explore163

the SST-forced response in TC activity. Instead, we only use deviations of the four-member164

simulations from the ensemble mean to understand the effects of downscaling on the internal165

variability of simulated TC track density.166

Detailed descriptions of iRAM and the procedures for identifying TCs in iRAM are given167

in Wu et al. (2012), and are presented here in Appendix B for the convenience of reference.168

Wu et al. (2012) show that iRAM reproduces various aspects of the observed TCs, including169

the interannual and seasonal variations in TC counts. Figures 1c and 3c respectively show170

the spatial distribution of climatological TC genesis and tracks and track density between171

July and October downscaled by iRAM (see also Figs. 3 and 4e in Wu et al. 2012). It is172

clear that iRAM is also in general able to capture the climatological characteristics of the173

observed TC track density. In contrast to HiRAM, iRAM simulates too high TC activity174

over the SCS.175
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d. Methods176

The TC track density in both observations and simulations is calculated as TC days177

within each 8◦ × 8◦ grid within the WNP on a yearly or seasonal basis. (This large grid178

is used to reduce the noise level; using a smaller grid, such as 5◦ × 5◦, produces similar179

results.) An EOF analysis is employed to extract the leading modes of the variability in TC180

track density, and linear correlation and regression analyses are utilized to detect the signal181

in SSTs and atmospheric conditions associated with each identified mode. A global mean182

SST (averaged between 65◦S and 65◦N) is removed before performing the correlation and183

regression analyses. Without removing the mean SST leads to similar results.184

TCs can form in any month of the year over the WNP. In this study, we consider not only185

the annually integrated TC track density, but also the TC activity in different seasons. Based186

on the strength of the TC activity, we define three seasons, namely April-May-June (AMJ),187

July-August-September (JAS), and October-November-December (OND), respectively as188

the early, peak, and late TC seasons.189

3. Forced variability in TC track density190

We use observed and HiRAM-simulated TC tracks to study the forced variability of WNP191

TC track density, separately on decadal and interannual timescales because of the difference192

in the underlying mechanisms. We separate out these two timescales via a 10-yr-band-pass193

filter following Liu and Chan (2008) and using the Fast Fourier Transform technique. In194

this section, we first examine separately the low- and high-frequency components of annual195

TC track density, and then proceed to explore the seasonal evolution of ENSO effect on TC196

track density.197

a. Low-frequency variability of annual TC track density198

In both observations and HiRAM simulations, the first leading mode of the low-frequency199

TC track density features a nearly-basin-wide pattern (Figs. 4a,b). The exception is the re-200

gion right east of Taiwan in observations and extending from east of the Philippines north-to-201

northwestward through East China in simulations where track density varies in an opposite202

way to that over the rest of the WNP. The time series of the principal component (PC) shows203

that the basin-integrated activity peaked in the early 1990s (Fig. 4c). It almost overlaps204
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with the time series of the normalized low-frequency TC counts in both observations and205

HiRAM simulations (Fig. 4c), indicating that this basin-wide mode is largely controlled by206

variations in annual TC number. This mode shows some resemblance to both the first and207

third modes of Liu and Chan (2008), but because the TC occurrence rate is normalized by208

the annual TC counts prior the EOF analysis, they obtain spatial patterns of an oscillation209

between the subtropics and lower latitudes (see Fig. 1 in Liu and Chan 2008).210

Regressing global SSTs on the PC reveals that changes in surface temperatures over the211

off-equatorial tropical central North Pacific may be responsible for this mode with anomalous212

warming corresponding to above-normal WNP TC activity (Fig. 5a for HiRAM simulations213

and Fig. S1a in the supplementary material for observations). This is in line with Matsuura214

et al. (2003), who also find that in observations decadal variations of the SSTs over this215

region correlate with the low-frequency changes in WNP TC counts of the peak TC season216

although such a connection in their model is quite weak. The anomalously warm SSTs217

there induce, to its northwest, reduced SLP, strengthened cyclonic vorticity in low-level218

atmospheric circulation, and enhanced upward motion in mid-troposphere (Figs. 5b,c for219

HiRAM simulations and Figs. S1b,c in the supplementary material for observations), all220

of which are favorable for producing an active TC season in the WNP. Weakened vertical221

shear of horizontal winds is also noticeable between 160◦E-160◦W, 10-20◦N, and thus may222

be partially responsible for the above-normal TC activity in this area.223

This mode may, to some extent, be linked to the PDO (Fig. 4c), as suggested in previous224

studies (e.g., Liu and Chan 2008, 2013). This connection becomes more evident when data225

over a longer period are used. As shown in Fig. S2b of the supplementary material, the ob-226

tained PC well matches the TC-peak-season PDO index, except for the 1980s. In particular,227

the recent cooling phase of the PDO reduces the TC genesis over the southeastern part of228

the WNP (Liu and Chan 2013) and contributes to the decreased TC track density over the229

tropical WNP since the mid-1990s.230

In addition, it is interesting to note that SSTs over the tropical and high-latitude North231

Atlantic (NA) are significantly below normal during an active WNP TC season (Fig. 5a232

and Fig. S1a in the supplementary material), and the North Atlantic Oscillation (NAO)233

during the preceding winter season is in its positive phase (Fig. 4c; Elsner and Kocher234

2000; Mei et al. 2014). As a result, the atmospheric conditions in the WNP and NA are235

opposite in terms of being favorable for TC development (Figs. 5b,c and Figs. S1b,c in the236

supplementary material), and thus TC activity over these two basins is expected to vary in237
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an opposite way. The physical mechanism for the connection between these two basins is238

unclear at this stage, and is worth further exploration.239

The second mode in both observations and HiRAM simulations is characterized by a240

dipole pattern of TC activity over two latitudinal bands in 110◦-150◦E between 10◦-20◦N241

and 20◦-30◦N (dashed white boxes in Figs. 6a,b), although large discrepancies exist in the242

rest of the WNP between observations and simulations. The temporal evolution of this mode243

exhibits a phase shift around the mid-1990s with lower latitudes (i.e., 10◦-20◦N) experiencing244

below-normal TC activity after the shift (Fig. 6c). The timing of this phase shift coincides245

with the Atlantic Multidecadal Oscillation (AMO). This is further supported by the pattern246

of global SST anomalies regressed on the corresponding PC (Fig. 7a for HiRAM simulations247

and Fig. S3a in the supplementary material for observations). An examination of various248

atmospheric fields suggests that SLP, low-level vorticity and mid-level upward motion have249

the right anomalous pattern (Fig. 7b and Fig. S3b in the supplementary material); the250

role of vertical wind shear is quite weak. Although this mode resembles the second mode of251

Liu and Chan (2008) that is obtained using a longer period of data, this mode seems not as252

robust as the first mode discussed above, and our confidence in it is low. Further exploration253

of the underlying dynamics is needed, and simulations by an AGCM that is subject to an254

AMO-like anomalous SST pattern may shed light on this.255

b. High-frequency variability of annual TC track density256

Applying EOF analysis to the high-frequency component of observed WNP TC track257

density depicts only one physically-meaningful mode (Fig. 8a). This mode suggests that258

the TC activity over the open ocean varies in phase except over the southern SCS and259

along the south and east coast of China where the phase is opposite. This differs from the260

classic pattern of anomalous TC activity induced by the conventional EP ENSO that is261

characterized by an oscillation between the southeastern and northwestern quadrants of the262

WNP. This difference may be reconciled by the EOF analysis of HiRAM simulations that263

reveals two dominant modes (Figs. 8c,e). One mode (the first mode) features a basin-wide264

mode, and the other (the third mode) shows a dipole pattern in the southeast-northwest265

direction3. The first mode is closely related to variations in annual TC number as indicated266

3Note that the second EOF mode in HiRAM simulations is not physically meaningful since its PC appears

to be noise and no organized SST pattern can be associated with it. Similarly, the third leading mode in

observations shows a dipole structure, but cannot be linked to any organized SST pattern. Accordingly,
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by a high correlation coefficient between the PC of this mode and the time series of the267

high-frequency component of annual TC counts (the linear correlation coefficient r=0.92;268

Fig. 8d). The spatial pattern of the third mode of HiRAM simulations is quite similar to269

that of TC activity induced by the conventional EP ENSO (e.g., Wang and Chan 2002; Kim270

et al. 2011a). A linear combination of PCs of these two modes highly correlates with the PC271

of the dominant mode in observations (r=0.75; Fig. 8b), indicating that the leading mode272

extracted from observations may be considered as a mixture of the two modes of HiRAM273

simulations.274

This is further confirmed by maps of global SSTs regressed respectively on PCs of the275

above-discussed modes. The first mode of HiRAM simulations (Fig. 9b) can be attributed276

to variations of SSTs over the tropical central Pacific and those over East Indian Ocean277

and western Pacific. The former SST anomalies are connected with the CP El Niño (Ashok278

et al. 2007; Kao and Yu 2009; Kug et al. 2009). Above-normal SSTs over the equatorial279

and northern off-equatorial tropical central Pacific and below-normal SSTs over the eastern280

tropical Indian Ocean are optimal for above-normal TC activity over the WNP, consistent281

with recent studies (e.g., Du et al. 2011; Zhan et al. 2011a,b; Kim et al. 2011a; Tao et al.282

2012; Jin et al. 2013). The third mode of HiRAM simulations is in association with the283

conventional EP El Niño (Fig. 9c). The regressed anomalous SST pattern for the leading284

mode of observations (Fig. 9a) appears to be a superposition of the two SST patterns for285

model simulations (Figs. 9b,c).286

To understand the underlying mechanisms, we further regressed atmospheric variables on287

PCs from HiRAM simulations. For the first mode, it appears that positive SST anomalies288

over the equatorial and northern off-equatorial tropical central Pacific and/or negative SST289

anomalies over the East Indian Ocean reduce SLP, increase low-level vorticity, and enhance290

mid-level upward motion and thus convection over the WNP (Figs. 10a,b), and thereby291

produce a favorable environment for the WNP TC genesis and development.292

On the contrary, a conventional EP El Niño generates a southeast-northwest dipole pat-293

tern over the WNP in the above-mentioned atmospheric fields: the southeastern quadrant294

experiences below-normal SLP, above-normal low-level vorticity, and above-normal mid-level295

upward motion and corresponding convective activity (Figs. 10c,d), and hence above-normal296

TC activity (Fig. 8c); the northwestern quadrant witnesses opposite conditions.297

For observations, the regressed atmospheric fields (i.e., the SLP, low-level vorticity and298

these modes are not discussed further here.
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mid-level upward motion; Fig. S4 in the supplementary material) have a consistent spatial299

distribution as the anomalies in TC track density shown in Fig. 8a, and can be viewed as300

a combination of the regressed fields for the two modes of HiRAM simulations shown in301

Fig. 10.302

Similar to the situation on low-frequency timescales (section 3a), the role of vertical wind303

shear appears to be relatively minor – compared to other atmospheric variables such as low-304

level vorticity – in controlling WNP TC activity on interannual timescales since the overall305

spatial correlation between TC track density and vertical wind shear is low (e.g., cf. Figs.306

8c,e and Figs. 10b,d). This is different from the situation in the NA, where all the factors307

discussed above (including vertical wind shear) work constructively to generate stronger308

TC activity when tropical NA SSTs are warmer than normal (Emanuel 2007; Vimont and309

Kossin 2007; Mei et al. 2014). Such a difference between basins is consistent with previous310

studies suggesting that vertical wind shear plays a more important role in TC activity over311

the NA than over the WNP (e.g., Aiyyer and Thorncroft 2011). At this stage the reason312

why the importance of vertical wind shear differs between these two basins is unclear and313

needs further investigation. One possible explanation is that relative humidity is higher314

and has weaker gradients in the WNP than in the NA (Fig. S5), making shear-induced315

drying/ventilation effect weaker in suppressing TCs in the former basin.316

c. Seasonal evolution of the ENSO effect on TC track density317

Above analyses have shown that on interannual timescales the variability of WNP TC318

track density is primarily controlled by SSTs over the equatorial Pacific in association with319

ENSO. Meanwhile, both the TC activity and ENSO have strong seasonal dependence. Thus320

it is expected that the spatial pattern of anomalous TC track density associated with ENSO321

evolves with season, which can have important implications for seasonal prediction of TC322

activity. To extract the seasonality, we employ a joint EOF analysis of TC track density323

over five successive seasons starting from AMJ of the current year through AMJ of the324

following year [these seasons are denoted respectively as AMJ(0), JAS(0), OND(0), JFM(1)325

and AMJ(1) with “0” and “1” in the parentheses respectively indicating the current and the326

following year]4. The underlying physical basis for this analysis is the persistence of ENSO327

4Removing one or two seasons from the joint EOF analysis produces very similar results in both obser-

vations and HiRAM simulations except removing both AMJ(0) and AMJ(1) in HiRAM simulations (since

the forced response in HiRAM is relatively weak during JAS and OND as shown below).
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signals from AMJ(0) to AMJ(1) (see e.g., Kug and Kang 2006; Du et al. 2009; Kosaka et al.328

2013).329

The left panels of Fig. 11 show the spatial pattern of the first leading mode of the330

observed TC track density from AMJ(0) through JAS(1) [the plot for JAS(1) is obtained331

by regressing on the PC of the first mode], and the right panels display the accompanied332

anomalies in SST and 850-hPa wind based on regression. Overall this mode appears to be333

mainly associated with the evolution of SST anomalies over the tropical central and eastern334

Pacific – the so-called hybrid central and eastern Pacific ENSO (Johnson 2013). The SST335

anomalies start to develop near the central tropical Pacific, and then quickly expand to the336

eastern tropical Pacific, followed by a slow decay.337

During the early TC season of the El Niño developing year [i.e., AMJ(0); Figs. 11a,b],338

modest warming develops over the equatorial and northern off-equatorial tropical central339

Pacific, and induces a giant cyclonic anomaly in the low-level circulation nearly over the340

whole WNP with westerly anomalies over the western tropical Pacific. This promotes the341

genesis and growth of WNP TCs. Because TC activity primarily concentrates over the low342

latitudes during AMJ, the generated anomaly in TC track density is most prominent south343

of 20◦N (Fig. 11a).344

As the warming over the tropical Pacific strengthens and moves eastward in JAS(0), the345

anomaly in the low-level circulation also intensifies (Fig. 11d), accompanied by an eastward346

extension of the monsoon trough that is closely related to TC genesis (e.g., Ritchie and347

Holland 1999). This, together with the climatological poleward extension of TC activity348

during JAS, leads to above-normal TC track density over the majority of the WNP (Fig.349

11c). Meanwhile, an anomalously anticyclonic circulation develops over the southern SCS350

and the Philippines (which is clearer in low-level vorticity field), suppressing TC genesis and351

thus TC track density there (Fig. 11c).352

During OND(0), the tropical Pacific warming reaches its peak intensity and extends to353

the west coast of South America (Fig. 11f). Correspondingly, the cyclonic anomaly in the354

low-level circulation shifts eastward, and the newly emerged anticyclonic anomaly grows to355

a considerable amplitude, expands to the whole SCS, and extends northeastward to the east356

of Japan (Fig. 11f). This results in a dipole pattern in both the WNP TC genesis and track357

density, most prominently equatorward of around 25◦N (Fig. 11e).358

In the following two seasons (i.e., JFM(1) and AMJ(1); Figs. 11g,h,i,j), the warming over359

the tropical central Pacific persists and then begins to decay, and both the anticyclonic (lo-360
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cated over the SCS and the Philippines) and cyclonic (located to the east of the anticyclonic361

one) circulation anomalies and accordingly the dipole pattern in TC track density sustain.362

But during JAS(1), the warming over the central tropical Pacific has significantly decayed363

while that over the eastern Pacific is still evident (Fig. 11l). The east-west dipole in both364

the low-level circulation and TC activity has changed to a south-north one (Figs. 11k,l).365

Figure 12 shows the second leading mode obtained from the joint EOF analysis of the366

observed TC track density together with the associated anomalies in SST and low-level367

atmospheric circulation. Different from the first mode, the anomalous SST pattern is mainly368

related to the conventional EP ENSO. Specifically, the SST anomalies first emerge over both369

the central and eastern tropical Pacific, then develop without a significant shift, peak over370

the eastern Pacific, quickly decay during AMJ(1), and eventually switch to an opposite phase371

during JAS(1). The accompanied SST anomalies in the Indian Ocean also evolve differently372

from those in the first mode.373

Differences in the location and amplitude of tropical Pacific warming as well as in the374

accompanied Indian Ocean SST features induce different responses in the TC track density.375

During AMJ of the developing year [i.e., AMJ(0); Fig. 12b], the center of the warm SST376

anomalies in the tropical Pacific is located more eastward than in the first mode. As a377

response, the low-level cyclonic circulation anomaly over the tropical WNP is also located378

closer to the dateline, accompanied by an anticyclonic anomaly to its west over the SCS.379

Because of the larger amplitude of the warming, the circulation also has a stronger response380

(cf. Figs. 11b, 12b). These characteristics are well imprinted in an east-west dipole pattern381

of TC track density with a larger amplitude (Fig. 12a).382

In JAS(0), the tropical Pacific warming develops, particularly near the coast of South383

America, leading to a prominent meridional dipole in the low-level circulation anomaly over384

the WNP as a Rossby wave train (Fig. 12d). As a result, the TC genesis equatorward385

of ∼10◦N significantly increases while the TC genesis to the north decreases (Fig. 12c).386

This dipole pattern is also evident in TC track density but with 20◦N as the nodal latitude387

(Fig. 12c). It is worth noting that the Indian Ocean dipole (IOD) begins to develop (Fig.388

12d). At the same time, the anomalously anticyclonic circulation over the SCS slightly shift389

equatorward and a cyclonic anomaly is discernible over the northern SCS.390

The eastern tropical Pacific warming and the IOD keep strengthening during OND(0)391

(Fig. 12f), and the anticyclonic anomaly in the low-level circulation over the SCS extends392

northward and dominates over the whole SCS. This anticyclonic anomaly and the eastward-393
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shifted and weakened cyclonic anomaly near the dateline form an east-west dipole over the394

tropical WNP. This dipole in circulation anomalies together with the seasonal retreat of TC395

activity to lower latitudes produces a pattern in TC track density similar to that in AMJ(0)396

(cf. Figs. 12a,e).397

During JFM(1) (Fig. 12h), the tropical Pacific anomalous warming starts to decay398

and the IOD has changed to a basin-wide warming in the Indian Ocean. The anticyclonic399

component of the dipole in the low-level circulation expands and moves eastward to cover400

the whole tropical WNP (Watanabe and Jin 2002), resulting in basin-wide reduced TC401

activity (Fig. 12g). Meanwhile, the establishment of anomalous easterly wind over the402

western tropical Pacific (Annamalai et al. 2005) quickly diminishes the eastern tropical403

Pacific warming during AMJ(1) by generating upwelling oceanic Kelvin waves (Fig. 12j;404

Kug and Kang 2006). The Indian Ocean warming persists and sustains the anticyclonic405

anomaly in low-level winds over the WNP, which is unfavorable for TC activity (Fig. 12i).406

In JAS(1) (Fig. 12l), the warming over the Indian Ocean shifts eastward (Du et al. 2009),407

and a La Niña state begins to develop over the central and eastern equatorial Pacific. The408

Indo-Pacific SST anomalies work together to intensify the anticyclonic low-level circulation409

anomaly equatorward of 20◦N and at the same time induce a cyclonic anomaly south of410

Japan (Fig. 12l; Kosaka et al. 2013). This leads to a dipole pattern in TC track density411

with suppressed TC activity over lower latitudes, opposite to that during JAS(0) (cf. Figs.412

12c,k).413

These two types of seasonal control of ENSO on TC activity are largely reproduced by414

HiRAM despite some systematic biases in the anomaly of TC track density (Figs. 13 and415

14). Some significant discrepancies need to be noted. First, for both modes, particularly the416

first one, the center of the associated SST anomalies over the tropical Pacific shifts westward.417

This is probably due to the bias in the sensitivity of atmospheric circulation in the model418

to prescribed SSTs. Second, for the first mode, the modeled TC track density responses not419

only to the equatorial Pacific SST anomalies but also even more strongly to changes in SSTs420

over the off-equatorial tropical central North Pacific (Fig. 13). The importance of the SST421

anomaly over the latter region in determining the East Asian TC activity has recently been422

emphasized by Jin et al. (2013). In observations, however, SST anomalies over the equatorial423

regions appear to be more important, except during AMJ(0) (Fig. 11). Thus, more effort is424

needed in identifying and understanding the areas over which the SST anomalies are more425

critical in affecting the WNP TC activity.426
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In addition, we note that the cumulative effect of these two types of ENSO during their427

developing phase [i.e., from AMJ(0) through OND(0)] is generally consistent with the two428

modes of annual TC track density discussed in section 3b.5 It is also interesting to note429

that among the three seasons when TC activity is most active (i.e., AMJ, JAS, and OND),430

AMJ appears to be the one where the model response is the strongest (Figs. 13a and 14a).431

In contrast, in the other two seasons, particularly during JAS (Figs. 13b and 14b), the432

SST control on TC activity is relatively weak. This is very likely related to the seasonal433

dependence of the internal variability, which we will discuss in the next section.434

4. Internal variability435

While the TC track density responds to prescribed SSTs, it also exhibits certain random-436

ness owing to the chaotic nature of the atmospheric processes. In this section, we attempt437

to identify areas and seasons in which the internal variability is large, and to assess the438

potential predictability of local TC occurrence.439

We use the signal-to-noise ratio (SNR) to measure the amplitude of internal variability440

(Mei et al. 2014):441

R =
σF
σI
, (1)

where σF is the standard deviation of the ensemble mean component (i.e., the forced re-442

sponse), and σI represents internal variability and is the standard deviation of the departures443

from the ensemble mean in all three member runs. A large value of R suggests weak internal444

variability and thus high potential predictability. Figure 15a shows the calculated SNR of445

the HiRAM-simulated annual TC track density. Values exceeding 1 can be found over the446

main development region (MDR) of the WNP TCs, whereas small values are primarily along447

the East and South Asian coastal regions, particularly over the northern SCS, indicating a448

low predictability of TC landfall.449

Wu et al. (2012) recently find that TC detection algorithm can contribute to the large450

internal variability in TC activity since TCs detected in models need to satisfy several451

5In observations, the hybrid CP and EP ENSO and the conventional EP ENSO during their developing

phase [i.e., from AMJ(0) through OND(0)] have a similar annual cumulative effect on the anomalous spatial

pattern of TC track density (i.e., a nearly-basin-wide pattern). This explains why the observed annual TC

track density shows only one EOF mode on interannual timescales rather than two modes as the HiRAM

simulations.
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criteria. They also show that TC frequency in model simulations is sensitive to intensity452

criteria. Because TC intensity changes considerably near the coastal regions, the sensitivity453

is expected to be amplified there. To understand whether the large internal variability in454

TC track density along the costal regions is due to the TC detection algorithm, we repeated455

the calculation of the SNR using TCs detected and tracked based on various detection456

schemes that differ in the minimum value of one or more of following metrics: maximum457

850-hPa relative vorticity, maximum temperature anomaly averaged between 300 and 500458

hPa, maximum surface wind speed, and track duration (criteria of other aspects, such as459

SLP, are the same as described in Appendix A). We find the results are most sensitive to the460

duration (not shown), consistent with Wu et al. (2012). Without a limit on duration, the461

SNR increases over most of the area south of 30◦N. But for all the TC detection schemes, the462

internal variability along the coastal regions is always large. We further examined the spatial463

distribution of climatological TC lysis detected based on the scheme described in Appendix464

A. We find only few TCs disappear over the ocean within 800 km of the coasts, and many465

TCs can make landfall. This suggests that changes in TC intensity near the coastal area are466

not the primary reason for the large internal variability near the East Asian coastal regions.467

Instead, we suspect the large internal variability along the coastal regions and small vari-468

ability in the MDR may be related to the fact that TCs prefer a westward-to-northwestward469

movement in the MDR while the tracks are very diverse on intraseasonal timescales west470

of the MDR (e.g., Camargo et al. 2007a); the SNR of TC genesis over the TC MDR is471

above 1 only over a small portion of this region and thus makes a small, if any, contribution472

to the weak internal variability of TC track density in the MDR. A further exploration of473

the connection between the internal variability of TC track density and the variability in474

atmospheric environmental conditions is left for a future study.475

As discussed in section 3c, the forced response appears to be stronger during AMJ than476

during JAS and OND. Here we examine the seasonal dependence of internal variability.477

Figures 15b,c,d display the SNR for TC track density for the early (AMJ), peak (JAS), and478

late (OND) TC seasons. It is clear that the randomness in TC track density is relatively weak479

during AMJ when TC activity is also relatively weak, whereas the internal variability exceeds480

the forced response during JAS when TCs are most active. It is worth mentioning that of the481

four months (i.e., July-October) considered, Wu et al. (2012) find strong month-to-month482

variations of internal variability in WNP TC counts with the largest internal variability in483

August. In addition, we note that in all seasons the TC track density along the coast of484
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East and Southeast Asia, especially over the northern SCS, is quite chaotic.485

Previous studies on regional climate modeling suggest that downscaling can significantly486

diminish the inherent internal variability because of the constraints on lateral boundary487

conditions, and that a smaller model domain generally leads to weaker internal variability488

(e.g., Caya and Biner 2004; Alexandru et al. 2007). To examine whether this also holds489

for the simulation of TC track density, we use an ensemble of four members of downscaling490

simulated WNP TCs from iRAM. Figure 15e shows the calculated SNR of TC track density491

during the peak TC season. Indeed, the internal variability is much weaker in the regional492

than global model, with the SNR in iRAM over much of the WNP greater than 1 (Fig. 15e).493

In spite of the advantages of regional downscaling simulations in suppressing the internal494

variability, however, the SNR of TC track density is still quite small over the northern495

SCS and along the coasts of East Asia (Fig. 15e), which is generally consistent with the496

conclusions from HiRAM simulations.497

Mei et al. (2014) suggest that in the NA, basin-integrated metrics, such as the basin-498

wide total TC counts/days, exhibit weaker internal variability and thus are generally more499

predictable than local TC occurrence, particularly along the coasts. To examine whether500

this also holds true for the WNP, we computed the SNR for both the total TC days and501

TC counts of the whole year as well as of individual seasons (Table 1). For all seasons502

considered, the SNR of basin-integrated metrics is larger than that of local TC track density503

over most of the WNP. The internal variability in basin total TC days and counts also has504

strong seasonal variations: it is weakest in the early TC season and strongest in the peak505

TC season. This feature is consistent with the seasonal dependence of TC track density. We506

conclude that as in the NA, in the WNP basin-integrated measures are more predictable507

than local TC occurrence, and TC activity over the peak TC season shows the strongest508

randomness, posing a serious challenge for the prediction as well as projection of TC threats509

to human society.510

5. Summary and Conclusions511

We have examined the SST-forced variability in tropical cyclone (TC) track density over512

the western North Pacific (WNP) between 1979 and 2008 using TC tracks from both obser-513

vations and simulations based on a 25-km-resolution GFDL High-Resolution Atmospheric514

Model (HiRAM). The model is forced by observed sea surface temperatures (SSTs), and515
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is able to capture the observed variability of annual WNP TC counts, particularly on low-516

frequency timescales. HiRAM also generally reproduces the observed spatial distribution of517

climatological WNP TC track density, despite an underestimation over the South China Sea518

(SCS).519

The forced variability of TC track density is studied separately on decadal and interannual520

timescales with the leading modes extracted by means of an empirical orthogonal function521

(EOF) analysis. The decadal variability is shown to be dominated by two modes in both522

observations and HiRAM simulations: a nearly-basin-wide mode, and a dipole mode between523

the subtropics and lower latitudes. The former mode, with the TC activity peaking in early524

1990s, is closely related to variations in WNP TC counts. This mode is primarily driven525

by low-frequency variations in SSTs over the off-equatorial tropical central North Pacific:526

anomalously high SSTs there reduce sea level pressure (SLP), increase low-level vorticity,527

and enhance mid-level upward motion over the WNP, and thereby produce above-normal528

TC counts and track density in the WNP. The second mode exhibits a phase shift around529

the mid-1990s, and might be in association with the Atlantic Multidecadal Oscillation. This530

mode, however, appears not as robust as the first mode, and needs longer model simulations531

and further exploration.532

On interannual timescales, the HiRAM-simulated TC track density is also controlled533

by two modes. The first mode features a basin-wide mode, and is linked to interannual534

variations in annual TC number. Analyses of SSTs and atmospheric circulation reveal that535

a positive phase of this mode can be attributed to above-normal SSTs over the equatorial and536

northern off-equatorial tropical central Pacific and/or below-normal SSTs over the eastern537

tropical Indian Ocean, and might be connected to the central Pacific (CP) El Niño. These538

anomalous SSTs tend to reduce the WNP SLP, increase low-level vorticity, and enhance mid-539

level upward motion, and thus produce favorable conditions for the WNP TC activity. The540

other leading mode is characterized by a southwest-northeast dipole in TC track density,541

mirroring a classical pattern induced by the conventional ENSO. During a conventional542

El Niño event, a meridional wave train is generated over the WNP, with the southeastern543

quadrant of the WNP experiencing a favorable atmospheric environment similar to that of544

the first leading mode and the northwestern quadrant experiencing unfavorable conditions.545

In observations, however, the interannual variability of the WNP TC track density is546

dominated by only one physically meaningful EOF mode, featuring a pattern that TC ac-547

tivity over the open ocean varies homogeneously and in an opposite manner to that over548

18



the southern SCS and along the coasts of China. This mode can be viewed as a combina-549

tion of the two leading modes described above from HiRAM simulations, because a linear550

combination of their principal components (PCs) highly correlates with the PC of the sole551

leading mode in observations. This indicates that in reality the CP-type of ENSO may not552

be distinct from the conventional eastern Pacific (EP) ENSO in modulating the annually553

integrated TC track density over the WNP.554

We have further examined the seasonality of the WNP TC track density variability based555

on a joint EOF analysis over consecutive seasons extending from April-May-June (AMJ) of556

the first year to AMJ of the following year. In observations, the seasonal evolution of the557

anomalous pattern in TC track density is modulated by two types of ENSO: a hybrid CP558

and EP ENSO, and a conventional EP ENSO. These two kinds of ENSO differ in various559

aspects, including amplitude and location of the maximum SST anomaly in the tropical560

Pacific, and pace of the decay. The accompanied evolution of anomalous SST pattern in561

the Indian Ocean also shows remarkable differences. These, as expected, induce distinct562

responses in the atmospheric circulation, and thereby lead to pronounced differences in the563

spatial distribution and seasonal evolution of TC track density.564

The HiRAM simulations show similar results. But the underlying SST anomalies are565

located slightly to the west of these in observations, indicating the difference between the566

model and observations in the sensitivity of the response to SST anomalies in various regions.567

In addition, we note that the cumulative effect of the two types of ENSO during their568

developing phase [i.e., from AMJ(0) to OND(0)] is generally consistent with the two modes569

of annual TC track density.570

The signal-to-noise ratio (SNR), defined as the ratio of the standard deviation of the571

ensemble mean to that of the deviations of the three members from the ensemble mean, is572

computed to characterize the internal variability. The SNR of the TC track density is found573

to be large over the TC main development region and is very small in the SCS and along574

the coast of East Asia for both annual and seasonal statistics. This spatial inhomogeneity575

in SNR of the track density shows weak dependence on TC detection algorithm, and is576

mostly related to the internal variability in TC tracks. The internal variability in tracks,577

in turn, may be related to the intraseasonal variability in the WNP atmospheric circulation578

(such as monsoon trough and subtropical high; e.g., Chen et al. 2009; Wu et al. 2011; Li579

and Zhou 2013), an issue that needs further exploration. The randomness in simulated TC580

track density is also found to be larger during the peak and late TC seasons (i.e., JAS and581

19



OND, respectively) than in the early season (i.e., AMJ). This suggests that TC track density,582

particularly that related to landfall, is less predictable during TC-active seasons, highlighting583

challenges for seasonal TC prediction, especially for landfall TCs. Downscaling using the584

IPRC Regional Atmospheric Model (iRAM) greatly reduces the internal variability of TC585

track density, but the SNR over the northern SCS and along the coastal regions of East Asia586

remains low. For both models (i.e., HiRAM and iRAM) basin-integrated metrics are more587

predictable than local TC occurrence.588
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APPENDIX A594

595

Tropical Cyclone Detection and Tracking in HiRAM596

The algorithm of detecting and tracking TCs in HiRAM is originally described in Mei597

et al. (2014), and is presented here for the convenience of reference. It uses 6-hr atmospheric598

fields including near-surface winds, SLP, 850-hPa vorticity, and 300-500 hPa averaged tem-599

perature to detect and track TCs following the methodology modified from Knutson et al.600

(2007) and Zhao et al. (2009). Specifically, potential storms are first identified using the601

following criteria:602

(1) The maximum of 850-hPa relative vorticity exceeds 3.2 × 10−4 s−1.603

(2) The local minimum in SLP, which must be within a distance of 2◦ latitude or longitude604

from the maximum in 850-hPa relative vorticity, is defined as the storm center and is at least605

6 hPa lower than the environment. The local maximum surface (represented as the lowest606

model level) wind speed within an area of 2.6◦ latitude and 2.6◦ longitude is detected to607

represent the storm intensity.608

(3) The local maximum of the temperature averaged between 300 and 500 hPa is defined609

as the center of the storm warm core. Its distance from the storm center must be within 2◦
610

latitude or longitude, and its temperature must be at least 1◦C warmer than the environment.611

After identifying all the potential storm snapshots, a trajectory analysis is then performed612

to find the storm tracks. The qualified tracks must meet the following two conditions:613

(1) The distance between two consecutive snapshots (with a time interval of 6 hr) must614

be shorter than 400 km.615

(2) The track must be longer than 4 days, and the maximum surface wind speed is greater616

than 17.5 m s−1 during the TC life cycle.617

APPENDIX B618

619

Downscaling iRAM Simulations and Associated620

Tropical Cyclone Detection and Tracking621
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The iRAM simulations and associated algorithm of TC detecting and tracking are origi-622

nally described in Wu et al. (2012), and are presented here for the convenience of reference.623

The model domain in use extends from 20◦S to 59.8◦N and from 100◦E to 160◦W, cover-624

ing the South China Sea and the WNP, with a horizontal resolution of 0.2◦. There are 28625

levels in the vertical with relatively higher resolutions in the planetary boundary layer, and626

the lowest level is about 35 m above the surface. The model initial and lateral boundary627

conditions are obtained from the NCEP/NCAR reanalysis 1 (Kalnay et al. 1996). SSTs are628

constructed using the Reynolds weekly SST data (Reynolds et al. 2002). Totally there are629

four simulations. They have the same lateral boundary conditions for the atmospheric fields630

and the same prescribed SSTs, and are only different in initial conditions.631

The model TCs are detected and tracked using 6-hr model outputs and using a method632

modified from Nguyen and Walsh (2001) and Stowasser et al. (2007). The detailed criteria633

are listed below:634

(1) The local maximum in the 850-hPa relative vorticity must exceed 5 × 10−5 s−1.635

(2) The local minimum in SLP must be located within a distance of 4◦ latitude or636

longitude from the maximum in the 850-hPa relative vorticity, and the location of this637

minimum in SLP is defined as the storm center.638

(3) The azimuthally-mean tangential wind speed at 850 hPa must be higher than that639

at 300 hPa.640

(4) The nearest local maximum in 200-500 hPa averaged temperature is distinguishable.641

Its location, defined as the center of the warm core, must be within a distance of 2.5◦ latitude642

or longitude from the storm center. The temperature of the warm core must be at least 0.5◦C643

warmer than the environment in all directions within a distance of 7.5◦ latitude or longitude.644

(5) The storm must form south of 35◦N.645

Then a trajectory analysis is performed to find the TC tracks, which must meet the646

following two conditions. First, the distance between two consecutive snapshots (with a647

time interval of 6 hr) must be shorter than 300 km if south of 25◦N or shorter than 600 km648

if north of 25◦N. Second, the storm must last at least 2 days and the maximum wind speed649

at the surface (i.e., the lowest model level) must be greater than 17 m s−1 for at least 2 days650

(not necessarily to be consecutive).651
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Table 1: SNR for the basin-integrated total TC days and TC counts of the whole year and
of individual seasons

Early TC season Peak TC season Late TC season Whole year
(Apr-Jun) (Jul-Sep) (Oct-Dec) (Jan-Dec)

Total TC days 1.65 0.98 1.35 1.68
TC counts 1.62 1.06 1.53 1.71
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Figure 1: Western North Pacific TC genesis (black dots) and tracks (green curves) of the
entire year from observations (a) and one realization of HiRAM (b), and of July–October
from one realization of iRAM (c) between 1996 and 2000. Only TCs generated between
100◦E and 170◦W are shown.
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Figure 2: (a) A comparison of observed (red) and HiRAM-simulated (black curve) anomalies
in the annual number of TCs in the WNP between 1979 and 2008. The climatological mean
number is 27.6 and 26.3 respectively in the simulations and observations. The correlation
between these two curves is 0.603 (P = 0.0004). Gray shading shows the spread of the
model results represented as the standard deviations of the results from the three ensemble
members. (b) A comparison of observed (red) and iRAM-simulated (black curve) anomalies
in the TC number during July–October. The climatological mean number between 1982
and 2001 is 19.5 and 19.3 respectively in the simulations and observations. The correlation
between these two curves is 0.698 (P = 0.0006). Gray shading shows the spread of the
model results represented as the standard deviations of the results from the four ensemble
members.
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Figure 3: (a) Observed and (b) HiRAM-simulated geographical distribution of the climato-
logical annual TC track density (units: days per year) calculated at each 8◦ × 8◦ grid. (c)
As in (b), but for iRAM-simulated TC track density during July-October.
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Figure 4: (a) Spatial pattern of the first leading mode of the low-pass-filtered annual TC
track density (denoted as mode L1; unit: days per year) in the WNP from observations.
(b) As in (a), but for HiRAM-simulated track density. (c) Normalized time series of the
corresponding principal component (PC) from observations (blue) and HiRAM simulations
(black). Also shown are normalized anomalies of the low-pass-filtered annual TC number
in observations (cyan) and HiRAM simulations (green), NAO index of the preceding winter
(red), and PDO index of the WNP TC peak season (magenta).
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Figure 5: (a) Regression of low-pass-filtered SST anomalies (unit: ◦C) on the PC of mode L1
from HiRAM simulations shown in Fig. 4c. Stippling indicates linear correlation coefficient
exceeding 0.5. (b) As in (a), but for SLP (contours; unit: hPa) and 500-hPa vertical pressure
velocity (shading; unit: Pa s−1). (c) As in (a), but for vertical shear of horizontal winds
(contours; unit: m s−1) and 850-hPa vorticity (shading; unit: s−1).
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Figure 6: As in Fig. 5, but for the second leading mode (denoted as mode L2) of the low-
pass-filterers annual TC track density. Note that although mode L2 in observations only
explains 9.8% of the variance, a significance test based on North et al. (1982) suggests that
this mode is significant.
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Figure 7: (a) Regression of low-pass-filtered SST anomalies (unit: ◦C) on the PC of mode L2
from HiRAM simulations shown in Fig. 6c. Stippling indicates linear correlation coefficient
exceeding 0.5. (b) As in (a), but for SLP (contours; unit: hPa) and 850-hPa vorticity
(shading; unit: s−1).
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Figure 8: (a) Spatial pattern (unit: days per year) and (b) time series of the PC (blue)
for the first leading mode of the high-pass-filtered annual TC track density in observations
(denoted as Obs. mode H1). (c) and (d) As in (a) and (b), but for the first leading mode
from HiRAM simulations (denoted as HiRAM mode H1). (e) and (f) As in (a) and (b),
but for the third leading mode from HiRAM simulations (denoted as HiRAM mode H3).
Also shown in (b) is a linear combination of the PCs for modes H1 and H3 from HiRAM
simulations (black), and in (d) is the normalized time series of anomalous annual TC counts
in HiRAM simulations (green).
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Figure 9: (a) Regression of high-pass-filtered SST anomalies (unit: ◦C) on the PC of mode
H1 from observations shown in Fig. 8a. Stippling indicates linear correlation coefficient at
a 0.05 significance level. (b) and (c) As in (a), but respectively for modes H1 and H3 from
HiRAM simulations.
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Figure 10: (a) Regression of low-pass-filtered anomalies in SLP (contours; unit: hPa) and
500-hPa vertical pressure velocity (shading; unit: Pa s−1) on the PC of mode H1 from
HiRAM simulations shown in Fig. 8d. Stippling indicates linear correlation coefficient at
a 0.05 significance level for either SLP or 500-hPa vertical pressure velocity or both. (b)
As in (a), but for vertical shear of horizontal winds (contours; unit: m s−1) and 850-hPa
vorticity (shading; unit: s−1). (c) and (d) As in (a) and (b), but for mode H3 from HiRAM
simulations.
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Figure 11: (a)(c)(e)(g)(i) Spatial pattern (shading; unit: days per year) of the first leading
mode of the joint EOF analysis of TC track density from AMJ(0) to AMJ(1) in observations
(explained variance: 15.1%). Magenta contours show the anomalous pattern of TC genesis
regressed on the PC. (b)(d)(f)(h)(j) Anomalous pattern of high-pass-filtered SSTs (shading;
unit: ◦C) and 850-hPa winds (vector; unit: m s−1) regressed on the PC. Stippling indicates
linear correlation coefficient at a 0.05 significance level for SSTs, and black arrows for 850-hPa
winds. (k)(l) As in (a) and (b), but for regressed patterns for JAS(1).
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Figure 11: Continued.
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Figure 12: As in Fig. 11, but for the second leading mode from observations (explained
variance: 10.8%).
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Figure 12: Continued.
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Figure 13: As in Fig. 11, but for the first leading mode from HiRAM simulations (explained
variance: 20.0%).
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Figure 13: Continued.
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Figure 14: As in Fig. 11, but for the second leading mode from HiRAM simulations (ex-
plained variance: 13.8%).

50



Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

2 m/s(l) JAS(1)

 40E  80E 120E 160E 160W 120W  80W
20S

10S

 EQ

10N

20N

30N

40N

50N

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

(k) JAS(1)

100E 115E 130E 145E 160E 175E 170W
 EQ

10N

20N

30N

40N

50N

−1.5

−1

−0.5

0

0.5

1

1.5

Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

(g) JFM(1)

100E 115E 130E 145E 160E 175E 170W
 EQ

10N

20N

30N

40N

50N

−1.5

−1

−0.5

0

0.5

1

1.5

Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

(i) AMJ(1)

100E 115E 130E 145E 160E 175E 170W
 EQ

10N

20N

30N

40N

50N

−1.5

−1

−0.5

0

0.5

1

1.5

Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

2 m/s(j) AMJ(1)

 40E  80E 120E 160E 160W 120W  80W
20S

10S

 EQ

10N

20N

30N

40N

50N

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8
Longitude (degree)

La
tit

ud
e 

(d
eg

re
e)

 

 

2 m/s(h) JFM(1)

 40E  80E 120E 160E 160W 120W  80W
20S

10S

 EQ

10N

20N

30N

40N

50N

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 14: Continued.
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(b) Early season (AMJ; HiRAM)
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(c) Peak season (JAS; HiRAM)
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(d) Late season (OND; HiRAM)
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(e) Peak season (JAS; iRAM)
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Figure 15: Signal-to-noise ratio for (a) annual, (b) early-season, (c) peak-season, and (d)
late-season TC track density calculated based on an ensemble of three members of HiRAM
simulations. (e) As in (c), but for the peak-season TC track density based on an ensemble
of four members of iRAM simulations. White contours show values of 1.
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